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← →

Understanding Unstable NIP Theories

Distality was introduced as a concept in first-order model theory by
Pierre Simon in 2013.

It was motivated as an attempt to better understand unstable NIP
theories by studying their stable and “purely unstable,” or distal ,
parts separately. This decomposition is particularly easy to see for
algebraically closed valued fields:

Stable Part: Residue field
Distal Part: Value group

This approach can be applied to types over NIP theories where each
type can be decomposed into a generically stable partial type and an
order-like quotient. (Simon 2016)
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Distal NIP Theories
Distality quickly became interesting and useful in its own right, and much
progress has been made in recent years studying distal NIP theories. Such
a theory exhibits no stable behavior since it is dominated by its order-like
component.

Examples:
o-minimal theories

p-adics

certain expansions of o-minimal theories
(Hieronymi, Nell 2017)

the asymptotic couple of the field of logarithmic transseries
(Gehret, Kaplan 2018)

the differential field of logarithmic-exponential transseries
(Aschenbrenner, Chernikov, Gehret, Ziegler 2020)
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Combinatorial Results

Many classical combinatorial results can be improved when study is
restricted to objects definable in distal NIP structures.

Cutting Lemma (Chernikov, Galvan, Starchenko 2018)

“ We believe that distal structures provide the most general natural
setting for investigating questions in ‘generalized incidence
combinatorics.’ ”

(p, q)-Theorem (Boxall, Kestner 2018)

Szemerédi Regularity Lemma (Chernikov, Starchenko 2018)
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Regularity Lemma for Distal Structures
(Chernikov, Starchenko 2018)

Although their result applies to infinite, as well as finite, k-partite
k-uniform hypergraphs, for easier comparison to the standard Szemerédi
Regularity Lemma, we state their findings for finite graphs:

GivenM a distal NIP structure and E ⊆ M2 a definable edge (i.e.,
symmetric and irreflexive) relation, there is a constant c such that for all
finite induced graphs (V ,E ) and all ε > 0, there is a uniformly definable
partition P of V with size O(ε−c) whose defect D ⊆ P2 is bounded by∑

(A,B)∈D
|A||B| ≤ ε|V |2

such that the induced bipartite graph (A,B,E ) on every non-defective pair
(A,B) ∈ P2 \ D is homogenous (i.e., complete or empty).
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Distal and non-distal NIP theories (Simon 2013)

An NIP theory is distal if and only if it has the following property: if

I0 + I1 + I2 ⊆ U

is a dense indiscernible sequence, where both cuts are Dedekind, and
a0, a1 ∈ U are such that each sequence

I0 + a0 + I1 + I2

I0 + I1 + a1 + I2

is indiscernible, then the sequence

I0 + a0 + I1 + a1 + I2

is also indiscernible.
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Distal and non-distal NIP theories (Simon 2013)

Simon worked strictly in the context of NIP theories and proved several
structural results concerning distality:

• Distality is invariant under base change; i.e.,

TB is distal ⇐⇒ T is distal.

• Distality can be characterized by the orthogonality of commuting
global invariant types; i.e.,

if p(x) and q(y) are global invariant types that commute,
then p(x) ∪ q(y) ` p ⊗ q.

• It’s sufficient to check one-dimensional sequences I ⊂ U1.
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Distal theories can be characterized by the following property: if

I0 + I1 + I2 + · · ·+ In−1 + In

is an indiscernible sequence, where each cut is Dedekind, and
A = (a0, . . . , an−1) is such that each sequence

I0 + a0 + I1 + I2 + · · ·+ In−1 + In,

I0 + I1 + a1 + I2 + · · ·+ In−1 + In,

...
I0 + I1 + I2 + · · ·+ In−1 + an−1 + In

is indiscernible, then the sequence

I0 + a0 + I1 + a1 + I2 + a2 + · · ·+ In−1 + an−1 + In

is also indiscernible.
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My research was motivated by the following questions:

Question 1 Are there theories where it is not always sufficient to check
the singletons of A, but it is always sufficient to check the
pairs of A?

Question 2 Are there theories where it is not always sufficient to check
the elements of [A]m−1, but it is always sufficient to check
the elements of [A]m?

Question 3 In the existing literature, distality has been studied solely in
the context of NIP theories. Is it interesting to study
generalizations of distality outside of NIP?
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m-Distality
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1-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 1-distal iff: for all
A = (a0, a1, a2, a3), if each singleton from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4
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2-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 2-distal iff: for all
A = (a0, a1, a2, a3), if each pair from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4
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3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

3-Distality in Pictures...

A Dedekind partition I = I0 + I1 + · · ·+ I4 is 3-distal iff: for all
A = (a0, a1, a2, a3), if each triple from A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

then all of A inserts indiscernibly...

a0 a1 a2 a3

I0 I1 I2 I3 I4

Reset
Roland Walker (UIC) Distality Rank 2021 13 / 57



← →

m-Distality

Let n > m > 0.

Definition
We say a Dedekind partition I = I0 + · · ·+ In is m-distal iff: for all sets
A = (a0, . . . , an−1) ⊆ U, if A does not insert indiscernibly into I, then
some m-element subset of A does not insert indiscernibly into I.
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m-Distality for EM-Types

Let n > m > 0.

Definition
A complete EM-type Γ is (n,m)-distal iff: every Dedekind partition
I0 + · · ·+ In |=EM Γ is m-distal.

Lemma
If Γ is (m + 1,m)-distal, then Γ is (n,m)-distal for all n > m.

Proof: Induction on n. �

Definition
A complete EM-type Γ is m-distal iff: it is (m + 1,m)-distal.
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Distality Rank for EM-Types

Observation: If a complete EM-type Γ is m-distal, then it is also n-distal
for all n > m.

Definition
The distality rank of a complete EM-type Γ, written DR(Γ), is the least
m ≥ 1 such that Γ is m-distal. If no such finite m exists, we say the
distality rank of Γ is ω.
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Skeletons

Let n > m > 0. Let I = I0 + · · ·+ In where

I0 = ω, I1 = ω∗ + ω, . . . In−1 = ω∗ + ω, In = ω∗,

and ω∗ is ω in reverse order.

Definition
If I ⊆ U is a sequence indexed by I = I0 + · · ·+ In, we call the
corresponding partition I = I0 + · · ·+ In an n-skeleton.

Notice that an n-skeleton is a Dedekind partition with n cuts.

Proposition
A complete EM-type Γ is m-distal if and only if there is an n-skeleton
I0 + · · ·+ In |=EM Γ which is m-distal.

Proof
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Distality Rank for Theories

Let m > 0.

Definition
A theory T , not necessarily complete, is m-distal iff: for all completions of
T and all tuple sizes κ, every Γ ∈ SEM(κ · ω) is m-distal.

In the existing literature, a theory is called distal if and only if it is 1-distal.

Definition
The distality rank of a theory T , written DR(T ), is the least m ≥ 1 such
that T is m-distal. If no such finite m exists, we say the distality rank of
T is ω.
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Proposition
If T is an L-theory with quantifier elimination and L contains no atomic
formula with more than m free variables, then DR(T ) ≤ m.

Proof: Let I = I0 + · · ·+ Im+1 be Dedekind and A = (a0, . . . , am).

Suppose all proper subsets of A insert indiscernibly into I.

Given φ ∈ L(x0, . . . , xn−1), there is a T -equivalent formula∨
i

∧
j
θij
(
xσij (0), . . . , xσij (m−1)

)
where each θij is basic and each σij : m→ n is a function.

Let (b0, . . . , bn−1) ⊆ I and (d0, . . . , dn−1) ⊆ I ∪ A both be increasing.

Since all m-sized subsets of A insert indiscernibly into I, then

U |= θij(bσij (0), . . . , bσij (m−1))↔ θij(dσij (0), . . . , dσij (m−1)). �
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← →

Finding Examples...

Corollary
Suppose L is a language where all function symbols are unary and all
relation symbols have arity at most m ≥ 2. If T is an L-theory with
quantifier elimination, then DR(T ) ≤ m.

This corollary helps us find examples by putting an upper bound on
distality rank:

We can not apply the corollary to groups...
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quantifier elimination, then DR(T ) ≤ m.

This corollary helps us find examples by putting an upper bound on
distality rank:

The theory of the random graph has distality rank 2.
The theory of the random 3-hypergraph has distality rank 3.
This generalizes, so...
The theory of the random m-(hyper)graph has distality rank m.
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quantifier elimination, then DR(T ) ≤ m.

This corollary helps us find examples by putting an upper bound on
distality rank:
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For example, if T is the complete theory of a strongly minimal group,
then DR(T ) = ω:

Let Ia0 · · · am−1 be an algebraically independent set.

Let am = a0 + · · ·+ am−1, and let A = (a0, . . . , am).

Now we can insert any m elements of A without breaking
indiscernibility...

a0 a1 am−1

am

I

However, inserting all of A breaks indiscernibility...

a0 a1 am−1 am

I
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a0 a1 am−1 am

I
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← →

Relationship between m-Distality and m-Dependence

Shelah introduced m-dependence as a property of first-order theories
(and formulae) which generalizes NIP:

1-dependence ⇐⇒ NIP
m-dependence =⇒ (m + 1)-dependence

New result courtesy of Artem Chernikov:

m-distality =⇒ m-dependence

Conjecture:

m-distal regularity improves m-dependent regularity

Roland Walker (UIC) Distality Rank 2021 22 / 57



← →

Distal and non-distal NIP theories (Simon 2013)

Simon worked strictly in the context of NIP theories and proved several
structural results concerning distality:

• Distality is invariant under base change; i.e.,

TB is distal ⇐⇒ T is distal.

• Distality can be characterized by the orthogonality of commuting
global invariant types; i.e.,

if p(x) and q(y) are global invariant types that commute,
then p(x) ∪ q(y) ` p ⊗ q.

• It’s sufficient to check one-dimensional sequences I ⊂ U1.
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← →

Base Change

Adding named parameters does not increase distality rank...

Proposition
If T is a complete theory and B ⊆ U is a small set of parameters, then
DR(TB) ≤ DR(T ).

Proof:
Let I = (bi : i ∈ I) be indiscernible over B.

Given m > 0, suppose there is a Dedekind partion I0 + . . .+ Im+1 of I
and a set A = (a0, . . . , am) witnessing that TB is not m-distal.

It follows that I ′ = (bi + B : i ∈ I) and A′ = (a0 + B, . . . , am + B) witness
that T is not m-distal. �
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← →

Base Change

If T is NIP, adding named parameters does not change distality rank...

Base Change Theorem (W. 2019)
If T is NIP and B ⊆ U is a small set of parameters, then
DR(TB) = DR(T ).

Proof of Theorem:

DR(TB) ≤ DR(T ) by the previous proposition.

We need to show that

TB is m-distal ⇒ T is m-distal.

But first, we need more background...
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← →

Alternation Rank

Let φ ∈ LU(x) and I = (bi : i ∈ I) ⊆ U |x | be an infinite indiscernible
sequence.

Definition
We use alt(φ, I) to denote the number of alternations of φ on I, i.e.,

sup

n < ω : ∃ i0 < · · · < in ∈ I U |=
∧
j<n
¬[φ(bij )↔ φ(bij+1)]

 .
Definition
We use alt(φ) to denote the alternation rank of φ, i.e.,

sup
{

alt(φ,J ) : J ⊆ U |x | is an infinite indiscernible sequence
}
.
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← →

IP and NIP

Definition
A formula φ ∈ L(x , y) is IP iff: there is a d ∈ U |y | such that
alt(φ(x , d)) =∞.

Definition
The theory T is IP iff: there is a φ ∈ LU(x) with alt(φ) =∞.

In both cases, we use NIP to denote the, often more desirable, condition
of not being IP.
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← →

Limit Types

Let (I, <) be a linear order and let I = (bi : i ∈ I) ⊆ U be a sequence of
tuples.

Definition
Given A ⊆ U, if the partial type

{φ ∈ LA(x) : ∃i ∈ I ∀j ≥ i U |= φ(bj)}

is complete, we call it the limit type of I over A, written limtpA(I).
Moreover, if it exists, we call limtpU(I) the global limit type of I and
may simply write lim(I).

If I is indiscernible, then limtpI(I) exists.

If T is NIP and I is indiscernible, the global limit type lim(I) exists.
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← →

In order to prove the Base Change Theorem, we need the
following lemma...

Let m > 0.

Base Change Lemma
Suppose T is NIP. If
I = I0 + · · ·+ Im+1 is a Dedekind partition,
A = (a0, . . . , am) is a set of parameters such that every proper subset
inserts indiscernibly into I, and
D ⊆ U is a small set of parameters,

then there is a set A′ = (a′0, . . . , a′m) such that A′ ≡I A and for each
σ : m→ m + 1 increasing, we have

a′σ(0) · · · a
′
σ(m−1) |= limtpD

(
c−σ(0), . . . , c

−
σ(m−1)

)
.

Proof
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← →

Now we can prove the Base Change Theorem...

Base Change Theorem (W. 2019)
If T is NIP and B ⊆ U is a small set of parameters, then
DR(TB) = DR(T ).

Proof of Theorem (continued):

It remains to show that TB is m-distal ⇒ T is m-distal.

Suppose Γ ∈ SEM is not m-distal.

Let I0 + · · ·+ Im+1 |=EM Γ be a skeleton which is indiscernible over B.

There exists a set A = (a0, . . . , am) such that every proper subset inserts
indiscernibly over ∅ but A does not.

Applying the lemma with D = B ∪ I yields a set A′ such that every proper
subset inserts indiscernibly over B but A′ does not. �
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← →

Theorem (W.)
Suppose T is NIP. A complete EM-type Γ is m-distal if and only if there is
an m-distal Dedekind partition I0 + · · ·+ Im+1 |=EM Γ.

Proof: (⇐) Suppose Γ ∈ SEM is not m-distal. Let J |= Γ with index
Q× (m + 1). Let K ⊆ J with index Z≥0 + Z + · · ·+ Z + Z≤0.

K ⊆

J
Q Q Q Q

Z≥0 Z Z Z≤0

b̄0 b̄1 b̄2 b̄3
a0 a1 a2

Since K is a skeleton, there is (φ,A,B) witnessing that K is not m-distal,
so by the Base Change Lemma, there is A′ ≡K A such that for each σ, we
have

a′σ(0) · · · a
′
σ(m−1) |= limtpJ

(
c−σ(0), . . . , c

−
σ(m−1)

)
.

It follows that (φ,A′,B) witnesses that J is not m-distal. �
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← →

Distal and non-distal NIP theories (Simon 2013)

Simon worked strictly in the context of NIP theories and proved several
structural results concerning distality:

• Distality is invariant under base change; i.e.,

TB is distal ⇐⇒ T is distal.

• Distality can be characterized by the orthogonality of commuting
global invariant types; i.e.,

if p(x) and q(y) are global invariant types that commute,
then p(x) ∪ q(y) ` p ⊗ q.

• It’s sufficient to check one-dimensional sequences I ⊂ U1.
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← →

Type Determinacy

Let n > m > 0.

Definition
Given p ∈ SA(x0, . . . , xn−1), we say that the n-type p is m-determined iff:
it is completely determined by the m-types{

q ∈ SA(xi0 , . . . , xim−1) : q ⊆ p and i0 < · · · < im−1 < n
}

it contains.

Theorem (W. 2019)
If T is m-distal, then for any n global invariant types

p0(x0), . . . , pn−1(xn−1)
which commute pairwise, their product p0 ⊗ · · · ⊗ pn−1 is m-determined.

Furthermore, if T is NIP, the converse holds as well.
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← →

Example: For higher distality ranks, it’s not always enough
to check sequences of singletons.

Let L = {R, <,P0,P1}. Let T be the complete theory of an ordered
random bipartite graph; i.e. the theory axiomatized by the following:

1 All models are linearly ordered by <.
2 The ordering is partitioned by P0 < P1 where each part has no

endpoints.
3 All models are bipartite graphs, with parts P0,P1 and edge relation R.
4 For each s, t < ω and each i < 2, we have the following axiom:

∀ distinct x0, . . . , xs−1, y0, . . . , yt−1 ∈ Pi ∀z0 < z1 ∈ P1−i ∃z ∈ P1−i[
z0 < z < z1 ∧

∧
r<s

xr R z ∧
∧
r<t

yr �R z
]

Roland Walker (UIC) Distality Rank 2021 35 / 57



← →

Example: For higher distality ranks, it’s not always enough
to check sequences of singletons.

Let L = {R, <,P0,P1}. Let T be the complete theory of an ordered
random bipartite graph; i.e. the theory axiomatized by the following:

1 All models are linearly ordered by <.
2 The ordering is partitioned by P0 < P1 where each part has no

endpoints.
3 All models are bipartite graphs, with parts P0,P1 and edge relation R.
4 For each s, t < ω and each i < 2, we have the following axiom:

∀ distinct x0, . . . , xs−1, y0, . . . , yt−1 ∈ Pi ∀z0 < z1 ∈ P1−i ∃z ∈ P1−i[
z0 < z < z1 ∧

∧
r<s

xr R z ∧
∧
r<t

yr �R z
]

Roland Walker (UIC) Distality Rank 2021 35 / 57



← →

Example: For higher distality ranks, it’s not always enough
to check sequences of singletons.

Let L = {R, <,P0,P1}. Let T be the complete theory of an ordered
random bipartite graph; i.e. the theory axiomatized by the following:

1 All models are linearly ordered by <.
2 The ordering is partitioned by P0 < P1 where each part has no

endpoints.
3 All models are bipartite graphs, with parts P0,P1 and edge relation R.
4 For each s, t < ω and each i < 2, we have the following axiom:

∀ distinct x0, . . . , xs−1, y0, . . . , yt−1 ∈ Pi ∀z0 < z1 ∈ P1−i ∃z ∈ P1−i[
z0 < z < z1 ∧

∧
r<s

xr R z ∧
∧
r<t

yr �R z
]

Roland Walker (UIC) Distality Rank 2021 35 / 57



← →

Example: For higher distality ranks, it’s not always enough
to check sequences of singletons.

If Γ ∈ SEM(1 · ω), then DR(Γ) = 1...

Pi

a0 a1

However, DR(T ) = 2...

P0

a0 a1

P1

Reset
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← →

Strong m-Distality
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← →

A Dedekind partition I = I0 + I1 is strongly 1-distal iff: for all small
bases D0 ⊆ U, if I is indiscernible over D0

and a ∈ U inserts
indiscernibly...

a

I0 I1

D0

then a inserts indiscernibly over D0...

a
I0 I1

D0

Reset
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← →

A Dedekind partition I = I0 + I1 is strongly 2-distal iff: for all small
bases D0,D1 ⊆ U, if I is indiscernible over D0D1

and a ∈ U inserts over
D0 and over D1...
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← →

Let m > 0.

Definition
An indiscernible Dedekind partition I0 + I1 is strongly m-distal iff: for all
a ∈ U and all sequences of small sets D = (D0, . . . ,Dm−1), if I0 + I1 is
indiscernible over D and I0 + a + I1 is indiscernible over

⋃
i 6=j Di for all

j < m, then I0 + a + I1 is indiscernible over D.

Definition
A complete EM-type Γ is strongly m-distal iff: all Dedekind partitions
I0 + I1 |=EM Γ are strongly m-distal.

Definition
The strong distality rank of a complete EM-type Γ, written SDR(Γ), is
the least m ≥ 1 such that Γ is strongly m-distal. If no such finite m exists,
we say the strong distality rank of Γ is ω.

Roland Walker (UIC) Distality Rank 2021 41 / 57
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Lemma
Suppose Γ ∈ SEM is not strongly m-distal and I = I0 + I1 |=EM Γ is a
Dedekind partition indexed by (I0 + I1, <). There is a witness (D, φ, a)
where

D = (D0, . . . ,Dm−1) is such that I is indiscernible over D,
φ(x) ∈ tpEM

D (I), and
a ∈ U is such that I0 + a + I1 is indiscernible over

⋃
i 6=j Di for all

j < m but U 6|= φ(a).
Moreover, we may assume that D = (Bd0, . . . ,Bdm−1) for some finite base
B ⊆ U and singletons d0, . . . , dm−1 ∈ U1 and that I0 + a + I1 is
indiscernible over B ∪ {di : i 6= j} for each j < m.

Corollary
A complete EM-type Γ is strongly m-distal if and only if there is a
Dedekind partition I0 + I1 |=EM Γ which is strongly m-distal.
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Suppose a Dedekind partition I = I0 + I1 is strongly 3-distal . If I is
indiscernible over Bd0d1d2

a

I0 I1

B d0
d1
d2

then a inserts indiscernibly over Bd0d1d2...
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B d0
d1
d2
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← →

Strong m-Distality =⇒ m-Distality

Let m > 0.

Proposition
Suppose a complete EM-type Γ is strongly m-distal. If a Dedekind parition
I0 + · · ·+ Im+1 |=EM Γ is indiscernible over some small set B and
A = (a0, . . . , am) is such that every proper subset inserts indiscernibly over
B, then A inserts indiscernibly over B. In particular, Γ is m-distal.

Proof:

Let Di = BIiai for each i < m.

Since Γ is strongly m-distal, it follows that Im + am + Im+1 is indiscernible
over D. �
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← →

Example: DR(Γ) < SDR(Γ)

Let L = {R, <,P0,P1} with R binary, and let T be the theory of the
ordered random bipartite graph. If Γ is the EM-type of an increasing
sequence of singletons in P0, the DR(Γ) = 1 . . .

P0

a0 a1

But SDR(Γ) > 1 . . .

P0

a

a1

P1

d
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← →

Proposition
If T is an L-theory with quantifier elimination and L contains no atomic
formula with more than m free variables, then SDR(T ) ≤ m.

Corollary
Suppose L is a language where all function symbols are unary and all
relation symbols have arity at most m ≥ 2. If T is an L-theory with
quantifier elimination, then SDR(T ) ≤ m.

For the following examples, distality rank and strong distality rank agree:
The theory of the random m-hypergraph has strong distality rank m.
The theories of (N, σ, 0) and (Z, σ), where σ : x 7→ x + 1, have
strong distality rank 2.
If T is the complete theory of a strongly minimal group, then
SDR(T ) = ω.
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← →

Strong m-Distality
for Invariant Types

Let p ∈ SU(x) be a global type which is invariant over some
small set of parameters B ⊆ U.
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← →

p is strongly 1-distal over B iff: for all small bases D0 ⊆ U and all
Morley sequences I |= pω�BD0 ,

if a ∈ U extends the sequence over B...

p

B

a

I

D0

then a extends the sequence over BD0...

p

B

a
I

D0
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p is strongly 2-distal iff: for all small bases D0,D1 ⊆ U and all Morley
sequences I |= pω�BD0D1 ,
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← →

Lemma

Let m > 0. If p is not strongly m-distal over B and I is an infinite Morley
sequence for p over B with no last element, then there is a witness
(D̄, φ, a) where

D̄ = (D0, . . . ,Dm−1) is such that I |= pω�BD̄,
φ(x) ∈ p�BD̄, and
a ∈ Ux is such that I + a is indiscernible over B ∪

⋃
i 6=j Dj for each

j < m but U |= ¬φ(a).
Moreover, we may assume that D̄ = (Cd0, . . . ,Cdm−1) for some finite
C ⊆ U and singletons d0, . . . , dm−1 ∈ U1 and that I + a is indiscernible
over BCd̄ \ dj for each j < m.
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p is strongly 3-distal iff: for all finite C ⊆ U, all singletons d0, d1, d2 ∈ U
and all Morley sequences I |= pω�BCd̄ ,
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← →

Strong Distality Rank for Invariant Types

Definition
The strong distality rank of p, written SDR(p), is the least m ≥ 1 such
that p is strongly m-distal. If no such finite m exists, we say the strong
distality rank of p is ω.
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← →

Strong Distality and m-Determinacy

Let n ≥ m > 0.

Proposition

Given a global invariant type q ∈ SU(y0, . . . , yn−1), if p is strongly
m-distal over A and p ⊗ q = q ⊗ p, then the product is determined by q
and restrictions of the form

(p ⊗ q)�xyσ(0)...yσ(m−2)

where σ : (m − 1)→ n.
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← →

Strong Distality Rank and Geometric Stability

Let T be a complete strongly minimal theory.

Let g ∈ SU(1) be the generic global type.

Let m > 0.

Proposition
The generic type g is strongly m-distal if and only if for every A ⊆ U, we
have

acl(A) =
⋃

A′ ∈ [A]<m

acl(A′)

where [A]<m denotes all subsets A′ ⊆ A with |A′| < m.
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← →

Strong Distality Rank and Geometric Stability
The proposition has the following geometric implications...

(I) SDR(g) = 2 ⇐⇒ (U, acl) is trivial

(II) SDR(g) ≤ 3 =⇒ (U, acl) is modular

(III) SDR(g) < ω =⇒ (U, acl) is locally modular

(IV) SDR(g) = ω ⇐= (U, acl) is non-trivial
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The proposition has the following geometric implications...

(I) SDR(g) = 2 ⇐⇒ (U, acl) is trivial

(II) SDR(g) ≤ 3 =⇒ (U, acl) is modular

(III) SDR(g) < ω =⇒ (U, acl) is locally modular

Earlier in the talk, we proved that any theory of a strongly minimal group
has infinite distality rank. This argument generalizes...

(IV) SDR(g) = ω ⇐= (U, acl) is non-trivial

It follows that (II) and (III) are vacuous.
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← →

Strong Distality Rank and Geometric Stability
We are left with...

(I) SDR(g) = 2 ⇐⇒ (U, acl) is trivial

(III) SDR(g) < ω =⇒ (U, acl) is locally modular

(IV) SDR(g) = ω ⇐= (U, acl) is non-trivial

Which combine to yield the following theorem...

Theorem (W.)
If (U, acl) is trivial, then

SDR(g) = 2.

If not, then
SDR(g) = ω.
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← →

Thank You!

A link to the paper and other interesting things can be found at my
website...

https://homepages.math.uic.edu/~roland/
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← →

Proof:
(⇐) Suppose Γ is not m-distal. Let I = I0 + · · ·+ Im+1 |=EM Γ be an
(m + 1)-skeleton. We will show that the skeleton is not m-distal.
Since Γ is not m-distal, there exist J |=EM Γ, a Dedekind partition
J = J0 + · · ·+ Jm+1, and a sequence A = (a0, . . . , am) ∈ U such that all
m-sized subsets insert but A does not. Let φ ∈ Γ and b̄i ∈ Ji such that

U 6|= φ(b̄0, a0, . . . , b̄m, am, b̄m+1).

Construct σ : I → J an order-preserving map such that

b̄i ⊆ σ(Ii ) ⊆ Ji .

We can extend σ to an automorphism of U . Let

A′ = (σ−1(a0), . . . , σ−1(am)).

Now any m-sized subset of A′ inserts into I0 + · · ·+ Im+1, but A′ does
not. �

Return
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← →

Proof of Lemma:

We will only handle the case where I is dense.

Assume no such A′ exists.
By compactness, there are φ ∈ tpI(a0, . . . , am) and
ψσ ∈ limtpD(c−σ(0), . . . , c

−
σ(m−1)) for each σ : m→ m + 1 increasing such

that
φ(x0, . . . , xm) `

∨
σ

¬ψσ(xσ(0), . . . , xσ(m−1)). (∗)

Let B ⊆ I be the parameters of φ.
For each σ as above, we construct an indiscernible sequence Jσ by
induction...
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← →

Stage 0

For all j < m + 1, choose I0
j to be a proper end segment of Ij excluding B

such that each ψσ is satisfied by every element of I0
σ(0) × · · · × I

0
σ(m−1).

Let I0 = I, and let J 0
σ = ∅ for each σ.
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← →

Stage 2i + 1

Let I ′ be a finite subset of I2i containing B.

There is an increasing map

I ′ −→ I \
⋃
j
I2i

j

fixing B such that for each j < m + 1, elements to the left of I2i
j remain

to the left and all other elements map to the right of I2i
j .

This map extends to an automorphism fixing B, so by compactness, there
is A′ = (a′0, . . . , a′m) realizing φ such that if we assign each a′j to the cut of
I2i immediately to the left of I2i

j , then any proper subsequence of A′
inserts into I2i ⊇ I.
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← →

Stage 2i + 1 (continued)

Recall
φ(x0, . . . , xm) `

∨
σ

¬ψσ(xσ(0), . . . , xσ(m−1)). (∗)

We can choose σi : m→ m + 1 increasing so that

a′σi (0) · · · a
′
σi (m−1) 6|= ψσi .

Let
I2i+1 = I2i ∪

{
a′σi (j) : j < m

}
where each a′σi (j) is inserted immediately to the left of I2i

σi (j). Let

J 2i+1
σi = J 2i

σi +
(
a′σi (0), . . . , a

′
σi (m−1)

)
.

For each j < m + 1, let I2i+1
j = I2i

j .
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← →

Stage 2i + 2

For each j < m + 1, choose bj ∈ I2i+1
j and an end segment I2i+2

j of I2i+1
j

excluding bj .

Let I2i+2 = I2i+1, and for each σ, let

J 2i+2
σ = J 2i+1

σ +
(
bσ(0), . . . , bσ(m−1)

)
.
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← →

Proof of Lemma (continued)

For each σ, let Jσ =
⋃

i<ω J i
σ.

Choose a σ which appears infinitely many times in (σi : i < ω).

It follows that ψσ alternates infinitely many times on Jσ, contradicting
NIP.

�
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